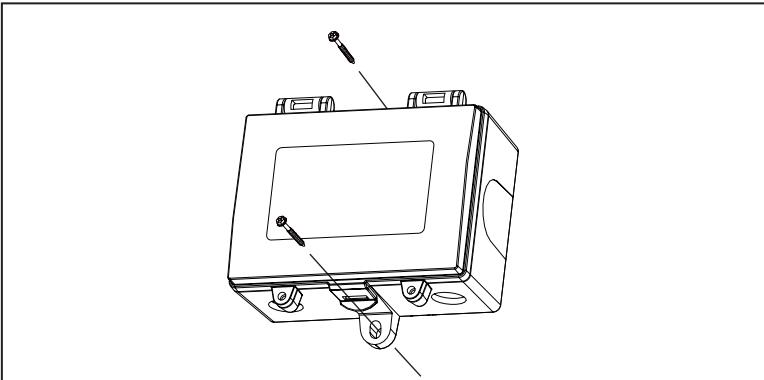


WARNING

It is recommended to stay below the Proof pressure (2x the highest range). Exceeding the proof pressure will effect the sensor's accuracy. Do not mix different PWR Model# pressure sensors that are factory calibrated to the transmitter provided.


BEFORE INSTALLATION

Read these instructions carefully before installing and commissioning the pressure transmitter. Failure to follow these instructions may result in product damage. Do not use in an explosive or hazardous environment, with combustible or flammable gases, as a safety or emergency stop device or in any other application where failure of the product could result in personal injury.

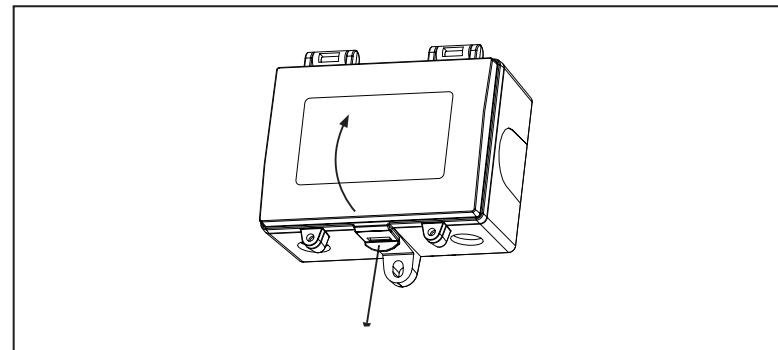
Take electrostatic discharge precautions during installation and do not exceed the device ratings.

MOUNTING

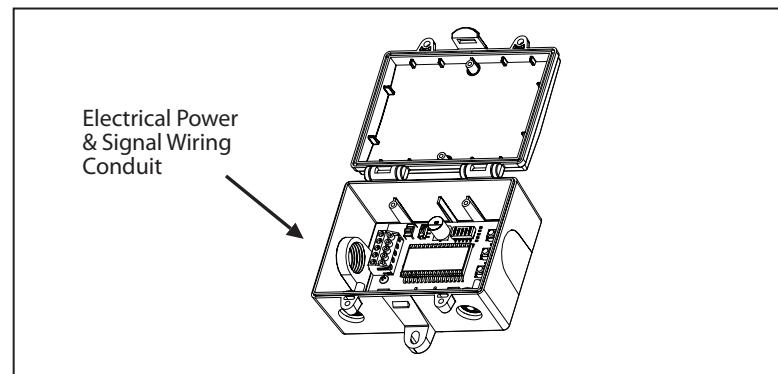
The transmitter mounts on a vertical surface using the two integrated mounting holes. The remote sensor cable connection should be located at the bottom of the enclosure. The two mounting holes will facilitate a #10 size screw (not supplied).

Ensure there is enough space around the unit to make the electrical connections and that it is within an acceptable distance for the length of remote sensor cables. Avoid locations with severe vibrations or excessive moisture. The enclosure has

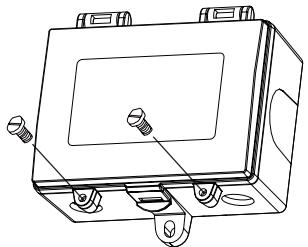
Remote Differential Wet Pressure Transmitter


PWRD Series – Installation Instructions for pressure conduit piping connectivity

INTRODUCTION

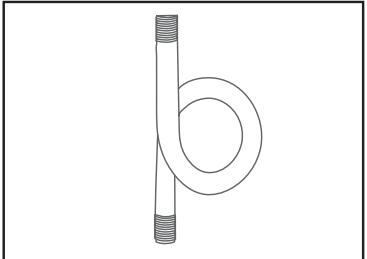
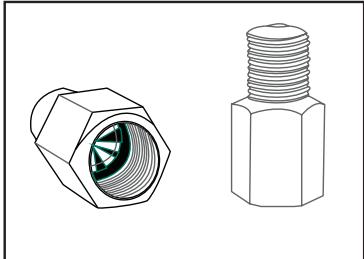

The differential pressure transmitter is designed with dual remote sensors that enable it to accept high pressure in ranges from 5 PSI to 500 PSI. All models can handle overload pressure 2X the maximum full-scale range and burst pressure is 10X the maximum full-scale range. Features include field-selectable pressure ranges and output signal types, output reversal and slow damping, port swapping, pressure reading display (HIGH, LOW and DIFFERENTIAL) and bidirectional measurements for the most flexible applications. The output signal is factory calibrated.

a standard opening for a conduit connector or cable gland type fitting. In this position the High port is on the left and the Low port is on the right as shown on the PCB.


The enclosure has a hinged cover with a latch. Open the cover by pulling slightly on the latch on the bottom side of the enclosure and at the same time pulling on the cover.

A 1/2" NPT threaded connection hole is provided in the left side of the enclosure as shown. Screw the EMT connector or cable gland connector in until tight. It is recommended that weatherproof conduit or cable gland fittings be used. The F style enclosure includes 1/2" NPT to M16 thread adapter and cable gland fitting.

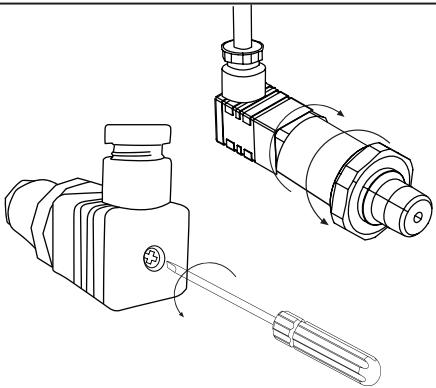
Two security screws are provided which can be installed to help secure the cover once settings and wiring connections are complete.

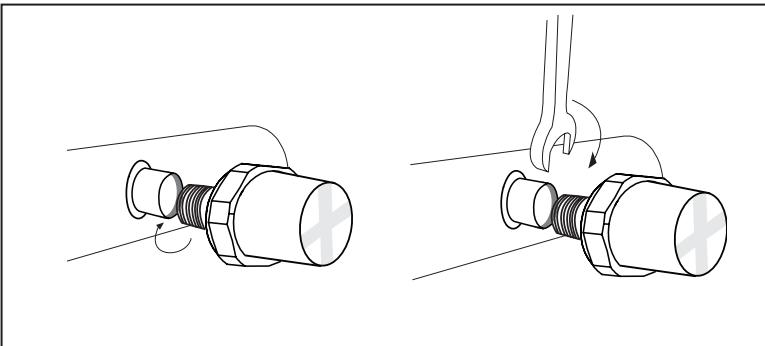



PLUMBING

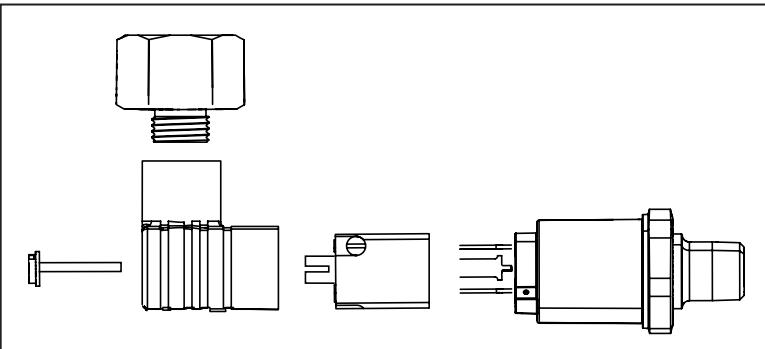
The two stainless steel pressure sensors are labeled High and Low. The output signal will indicate a positive value when the pressure applied to the High sensor is greater than the pressure applied to the Low sensor, so ensure the sensors are connected correctly as shown in a typical application in Figure 6. Both sensors incorporate 1/4" NPT male threads for connection to the pipe being monitored. Do not allow material to fall into the pressure ports as contamination could damage the sensors. It is recommended to use Teflon tape to prevent leaks.

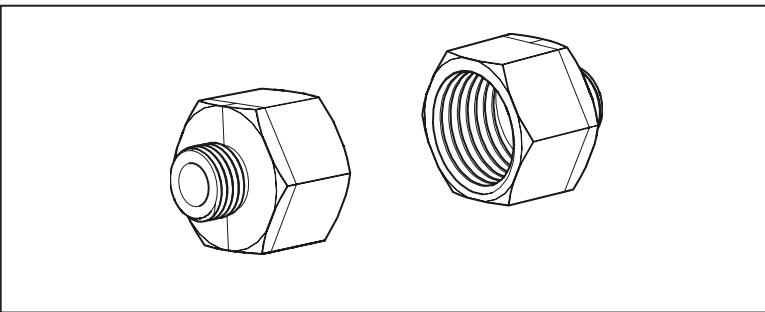
IMPORTANT ACCESSORY OPTION


Please consider using a Snubber (A515) to reduce surges, spikes or pressure pulsation such as water hammer effect to improve monitoring accuracy and pressure sensor life. A pigtail Syphon (A525) is recommended for applications involving temperatures above 37.8°C (+100°F). For best results, mount the steam syphon heat buffer in an upright vertical position and add a little water inside syphon to protect the transducer sensor on startup prior to any condensate accumulation. In both cases the Snubber or Syphon should be mounted between the pressure transducer sensor and the shut-off valve.

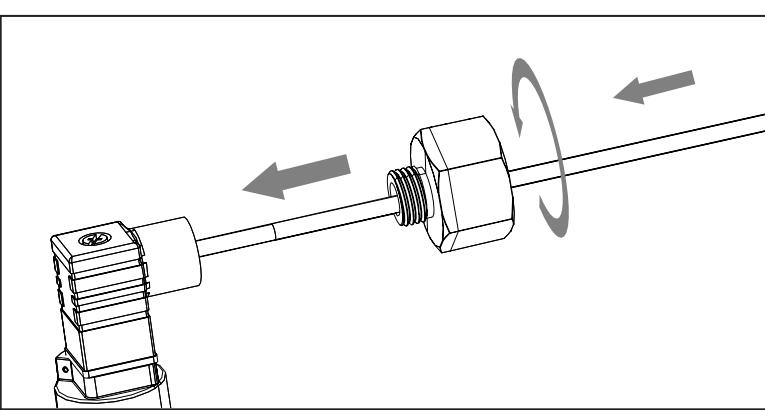

IMPORTANT

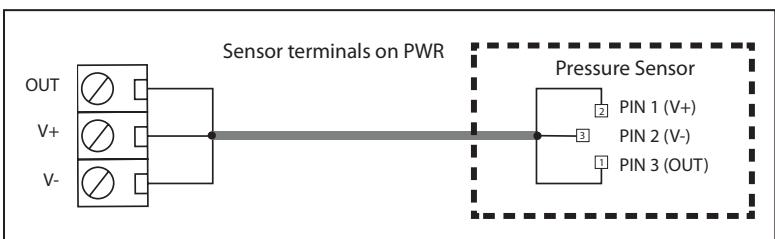
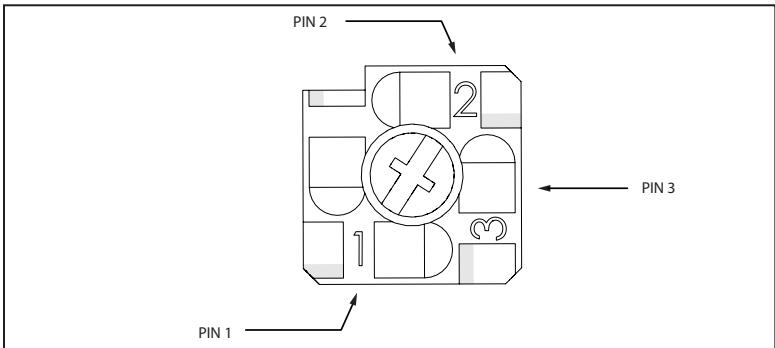
Before installing the sensor(s) ensure the sensor port, fitting or shutoff valve is free of any fluids in the area the sensor is being installed. Failure to remove excessive fluids may damage the sensor during pressurization.


1. Take the sensor labelled as HIGH PORT out of the box
2. Remove the DIN C connector from the sensor process connection by unscrewing the top head


3. Install the sensors into the system plumbing (use 3/4" hex to tighten"). Tape the electrical termination to avoid water infiltration

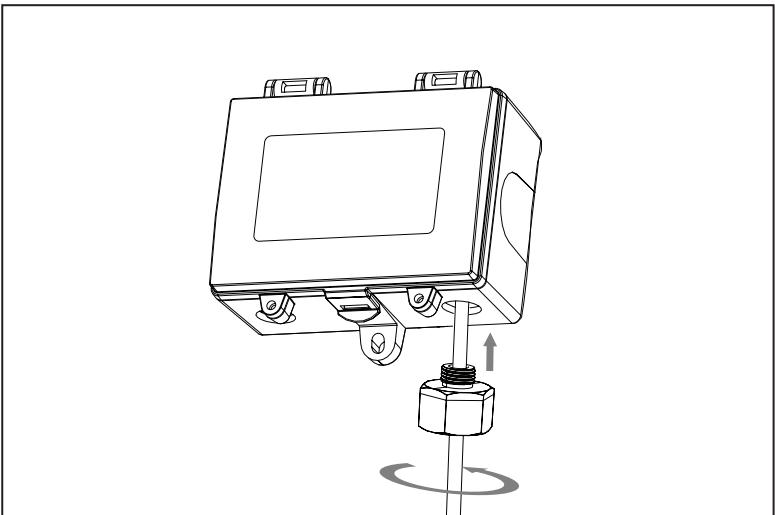
4. Separate the terminal block parts for wiring as shown below


5. Install one PG7 to 1/2" conduit fitting into the conduit connector

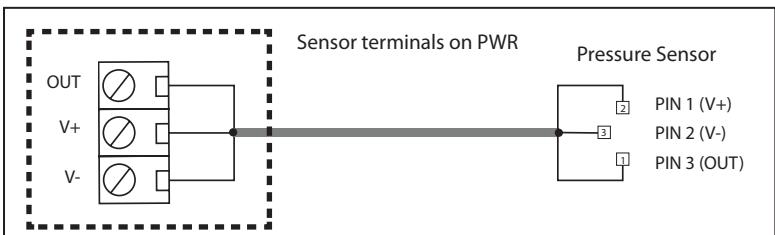


6. Feed wires through a flexible or EMT conduit and insert them into the DIN C connector.

Use a 20-24 AWG stranded, 3 conductors (shielded or non-shielded) cable to wire between the transmitter and sensors.

AWG wire size (solid)	Diameter (inches)	Resistance per 1000 ft (ohms)	Resistance per 1000 m (ohms)
24	0.0201	25.67	84.2
22	0.0254	16.14	52.7



7. Follow wiring diagram



8. Re-assemble the DIN C Connector and plug back it to the process connector termination head

9. Connect the other conduit fitting on the transmitter

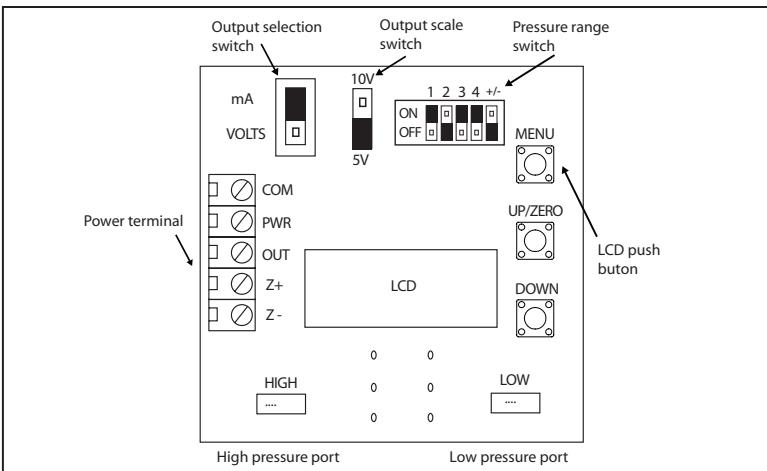
10. Wire the sensor on the terminal block located inside the transmitter labelled HIGH. The terminal is removable to ease the wiring step

11. Re-do step 2 to step 11 for sensor labelled LOW PORT.

CONFIGURATION

Most configurations are done using User Menu setting with LCD and push buttons on PCB.

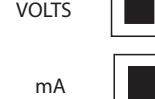
See the User Menu section for details.


WARNING

Do not have power on device when selecting /moving Input Pressure Dip Switches and Output Signal Switch positions.

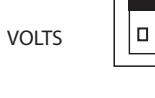
OUTPUT SELECTION

The transmitter features user-selectable output signals of 4-20 mA, 0-5 Vdc and 0-10 Vdc. It is factory configured to operate in the Current (4-20 mA output) mode but can be changed to Voltage mode by sliding the output selection switch from the position marked mA to the position marked VOLT no Fig# identified.


In Voltage mode the output scale may be changed to either 0-5 or 0-10 Vdc by using the board switch.

In Current mode:

mA



VOLTS

10V

5V

In Voltage mode - 0-5V scale:

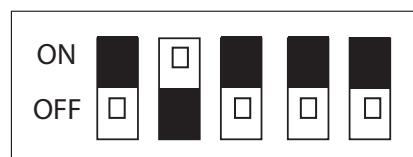
mA

VOLTS

10V

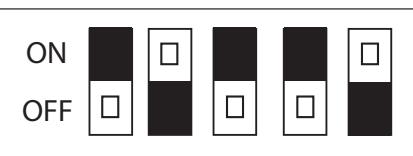
5V

In Voltage mode - 0-10V scale:


PRESSURE RANGE

The pressure range defaults to the largest range (4) of the device. Use the Pressure range switch to step through the four available ranges specific to the model.

Example : PWRDB01 offers 5, 10, 25, 50psi as pressure ranges. If 10 psi is to be selected for maximum range in the application DIP switch is to be set as follow:


DIP switch for Uni-directional (0-10psi) operation..

1 2 3 4 +/-

DIP switch setting for Bi-directional (-10 to +10psi) operation..

1 2 3 4 +/-

The pressure values available options are shown below:

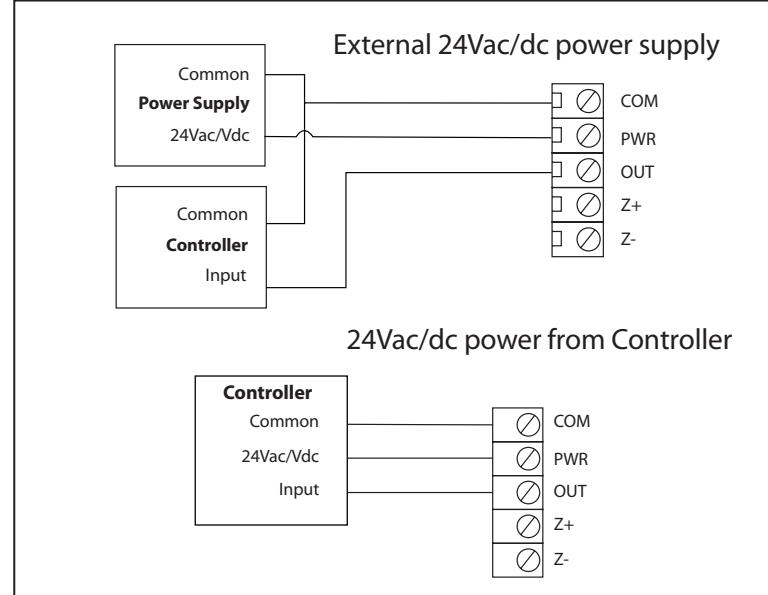
Model	PRESSURE RANGE			
	1	2	3	4
01	5 PSI	10 PSI	25 PSI	50 PSI
02	10 PSI	20 PSI	50 PSI	100 PSI
03	25 PSI	50 PSI	125 PSI	250 PSI
04	50 PSI	100 PSI	250 PSI	500 PSI
05	0.5 Bar	1.0 Bar	2.5 Bar	5.0 Bar
06	0.7 Bar	1.4 Bar	3.5 Bar	7.0 Bar
07	1 Bar	2 Bar	5 Bar	10 Bar
08	3.5 Bar	7 Bar	17.5 Bar	35 Bar
09	50 kPa	100 kPa	250 kPa	500 kPa
10	70 kPa	140 kPa	350 kPa	700 kPa
11	100 kPa	200 kPa	500 kPa	1000 kPa
12	350 kPa	700 kPa	1750 kPa	3500 kPa
13	40 PSI	80 PSI	200 PSI	400 PSI

WIRING

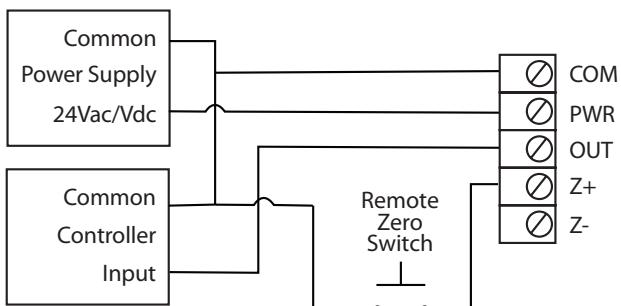
Deactivate the 24 Vac/dc power supply until all connections are made to the device to prevent electrical shock or equipment damage.

Use 14-22 AWG shielded wiring for all connections and do not locate the device wires in the same conduit with wiring used to supply inductive loads such as motors. Make all connections in accordance with national and local codes.

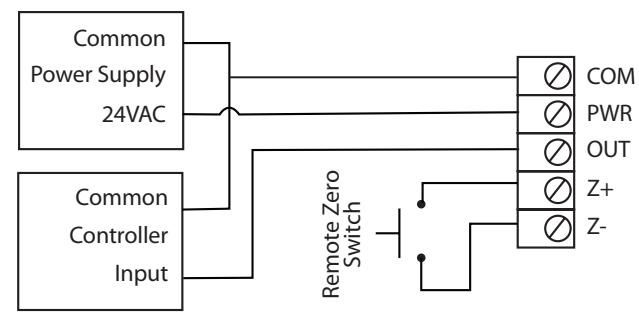
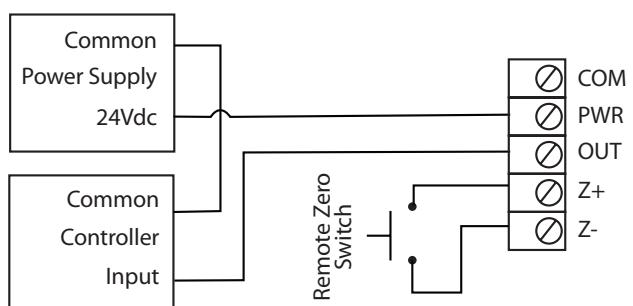
Remove terminal block from the board then complete the wiring connection according to the wiring diagram for the applicable power supply and output signal type.


Connect the plus DC or the AC voltage hot side to the PWR terminal. For voltage output or AC power, the supply Common is connected to the COM terminal. **DO NOT connect power to the OUT terminals as the device will be damaged.** It has half-wave power supply so the supply Common is the same as the signal Common.

For DC power with a current output, only a single loop is needed to power the device. For AC power, a 3-wire circuit is required, with the supply common connected to the COM terminal.


The analog output is available on the OUT terminal. Check the controller Analog Input to determine the proper connection before applying power.

NOTE



Both the low and high pressure sensors must be open to atmosphere to perform auto-zeroing function. A sensor Auto-Zero can be initiated by pressing and holding the internal <ZERO> button for at least 3 seconds. If both pressure ports are close to zero pressure, then the device will calibrate with a new zero point. The Auto-Zero can also be initiated by holding the ZERO terminal low for 3 seconds.

Voltage (0-10V or 0-5V) wiring setup when using a Remote Zero Switch Command. **Switch Common only and do not apply voltage to Z+ terminal.**

Current 4-20mA is on a 3-wire or loop powered circuit. When using a Remote Zero Switch command **requires Z+ voltage passing thru switch and return signal back to Z- terminal.**

START-UP

Upon applying power to the device, it will enter the start-up mode.

The LCD will display the current software version and pressure range code

1. SOFTWARE VERSION NUMBER. Example:

1.00

2. MODEL PRESSURE RANGE. Example:

P 1

USER MENU

The User Menu can be accessed by pressing the <MENU> key at any time after the start-up mode. Note that the <ZERO> key function changes to an <UP> key function when a menu is active.

The system suspends operation when in the menu and holds the last pressure value as the output value. If the User Menu is not active for 5 minutes (no key press), then the menu will exit and the device returns to normal operation.

The User Menu operation and parameters are explained below.

In normal status, press MENU key to enter user menu. "P-0", for example.

"P-0" menu is for showing factory configured max pressure range only. Press MENU key to advance "A 4" user menu.

"A 4" menu is for pressure averaging time. Press UP or DOWN key to get the desired value from 1 to 60 seconds. Press MENU key to save the value and advance "r 4" user menu.

"r 0" menu is for output reversing. Press UP or DOWN key to get the desired value from 0 to 1. 0 is for normal output (i.e. 0-5V, 0-10V or 4-20mA), and 1 is for reversing output (i.e. 5-0V, 10-0V or 20-4mA). Press MENU key to save the value and advance "S 0" user menu if the device is DP. Otherwise (i.e. the device is GP), advance "d 0" user menu.

"S 0" menu is for port swapping. Press UP or DOWN key to get the desired value from 0 to 1. 0 is for no swap (i.e. pressure = HI - LO), and 1 is for swap (i.e. pressure = LO-HI). Press MENU key to save the value and advance "d 0" user menu.

"d 0" menu is for LCD display mode. Press UP or DOWN key to get the desired value from 0 to 1. 0 is for displaying differential pressure only, and 1 is for displaying "High/ Low/Differential pressure" in sequence. Press MENU key to save the value and exit to normal operation.

IMPORTANT

The pressure value is displayed on a 3 1/2" digit LCD. For pressure value of 2000 kPa and above, pressure value will appear with a display gap. Example: pressure read is 2005 Kpa, value displayed is 200 5 Kpa

200

5

SPECIFICATIONS

Power Supply: 24VAC/DC SELV (class 2) supply

Consumption: Voltage mode DC=6mA, AC=16mA
Current mode DC=20mA, AC=38mA

Output Signal: 4-20 mA, 0-5/0-10 Vdc (switch selectable)

Output Drive: Current: 500 ohms max **Voltage:** 10K ohms min

Protection Circuitry: Reverse voltage protected, transient protected

LCD: 3 1/2 digit LCD display

Accuracy: +/- 1% FS for the three highest ranges

+/- 2% FS for the lowest range

@ 22°C (72°F) including hysteresis, non-linearity and repeatability

Stability: ± 0.25% FS typical (1 year)

Pressure Ranges: 4 per model (switch selectable)

Media Compatibility: Any gas or liquid compatible with 316 Stainless steel

Proof Pressure: 2X highest range per model

Burst Pressure: 10X highest range per model

Maximum Line Pressure: highest model range

Pressure Cycles: > 50 million

Surge Damping: 1-60 seconds averaging (menu selectable)

Zero Adjust: Push-button and remote input

Remote Sensor Operating Range: - 40 to 105°C (-40 to 221°F)

Enclosure/Cable Operating Environment: 0 to 60°C (32 to 140°F), 10 to 90 %RH non-condensing

Output Class: Class 2

Certification: UL Model #MPWRDPXSL File# E539555

Sensor Housing: IP65

Remote Sensor Cable **S:** FT-6 plenum rated

A: Armored Flexible S/S

C: Conduit option

Wiring Connection: 14-22 AWG screw terminal block

Enclosure: Polycarbonate, UL94-V0, IP65 (NEMA 4X)

F style includes thread adapter (1/2" NPT to M16) and cable gland fitting

Dimensions: W 112.5mm x H 116.5mm x D 53.7mm

(4.43" x 4.59" x 2.11")

Weight: 650g (22.9 oz) - Including remote cable and sensors

Country of Origin: Canada